VALENCE FORMULA FOR THE CONGRUENCE GROUP $\Gamma_0(p)$

DONG YEOL OH

ABSTRACT. We prove the valence formula for the congruence group $\Gamma_0(p)$.

1. Introduction and statement of a main result

Let \mathbb{H} be the complex upper half plane. Let $X_0(1)$ be the compact Riemann surface obtained by adjoining the the cusp ∞ to Riemann surface $SL_2(\mathbb{Z})\backslash\mathbb{H}$. For $\tau\in\mathbb{H}\cup\{\infty\}$, let $Q_\tau\in X_0(1)$ be the point associated to τ under usual identification. Then the following formula [3, Theorem 1.29] which is called a valence formula is well known: For a non-zero meromorphic modula form f of weight k on $SL_2(\mathbb{Z})$,

$$\sum_{Q_{\tau} \in SL_2(\mathbb{Z}) \backslash \mathbb{H}} \frac{\operatorname{ord}_{\tau} f}{l_{\tau}} + \operatorname{ord}_{\infty} f = \frac{k}{12},$$

where $\operatorname{ord}_{\tau} f$ is the standard order of vanishing of f at τ , $\operatorname{ord}_{\infty} f$ is the order of vanishing of f at ∞ and $l_{\tau} \in \{1,2,3\}$ is the order of the isotropy subgroup of τ in $SL_2(\mathbb{Z})/\{\pm I\}$. This valence formula is useful in the theory of modular forms. Using the formula one can show that the dimension of the vector space of modular forms of weight k on $SL_2(\mathbb{Z})$ is less than or equal to $\lfloor k/12 \rfloor + 1$.

For a positive integer N, let

$$\Gamma_0(N) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) \mid c \equiv 0 \bmod N \right\},$$

which is called the congruence group of level N. Note that $\Gamma_0(1) = SL_2(\mathbb{Z})$. In [2, Proposition 3.1], the author proved a valance formula for the congruence group $\Gamma_0(2)$. In this paper we generalize this formula to higher level cases. Let p be a prime and $X_0(p)$ be the compact Riemann

Received May 30, 2024; Accepted September 12, 2024.

2020 Mathematics Subject Classification: Primary 11F03, 11F11.

Key words and phrases: Meromorphic modular form, Valence formula.

surface obtained by adjoining the two cusps 0 and ∞ to Riemann surface $\Gamma_0(p)\backslash\mathbb{H}$. For $\tau\in\mathbb{H}\cup\{0,\infty\}$, let $Q_\tau\in X_0(p)$ be the point associated to τ under usual identification. With these notations we state the main result.

THEOREM 1.1. Let p be a prime and f be a non-zero meromorphic modular form of weight k on $\Gamma_0(p)$. Then we have

$$\sum_{Q_{\tau} \in \Gamma_0(p) \backslash \mathbb{H}} \frac{\operatorname{ord}_{\tau} f}{l_{\tau}} + \operatorname{ord}_0 f + \operatorname{ord}_{\infty} f = \frac{(p+1)k}{12},$$

where $l_{\tau} \in \{1, 2, 3\}$ is the order of the isotropy subgroup of τ in $\Gamma_0(p)/\{\pm I\}$.

REMARK 1.2. A valance formula for $\Gamma_0(p)$ is well-known as in Theorem 1.1. But the proof of it does not appear in the literature. So we give Theorem 1.1.

2. The Proof of Theroem 1.1

For any function f on the complex upper half plane \mathbb{H} and $k \in \mathbb{Z}$, the usual slash operator $|_k$ is defined as follows: For $\gamma := \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{R})$ and $z \in \mathbb{H}$,

$$(f|_k\gamma)(z) := (cz+d)^{-k}f(\gamma z).$$

Let N be a positive integer and $W_N := \begin{pmatrix} 0 & -\frac{1}{\sqrt{N}} \\ \sqrt{N} & 0 \end{pmatrix}$.

Let p be a prime and f be a non-zero meromorphic modular form of weight k on $\Gamma_0(p)$. Put $h := \operatorname{ord}_{\infty} f(z)$, $h' := \operatorname{ord}_0 f(z)$, and $q := e^{2\pi i z}$. Then f has the following expansions at the cusps:

$$f(z) = \sum_{n \ge h} a(n)q^n$$
 at ∞ ,

$$(f|_k W_1)(z) = \left(f|_k \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}\right)(z) = \sum_{n > h'} b(n)q^{n/p} \quad \text{at} \quad 0.$$

We define the theta-operator by

$$\theta f(z) := \frac{1}{2\pi i} \frac{d}{dz} f(z) = \sum_{n \ge h} na(n) q^n$$

and denote by $E_2(z)$ the weight two Eisenstein series

$$E_2(z) := 1 - 24 \sum_{n=1}^{\infty} \sum_{d|n} dq^n.$$

Note that we have

$$\frac{\theta f}{f}(z) = h + \sum_{n>1} c(n)q^n \ (= h + O(q)).$$

By [1, Lemma 2.2], we have a meromorphic modular form G of weight two on $\Gamma_0(p)$ defined as follows:

(2.1)
$$G(z) := \frac{\theta f}{f}(z) + p \frac{\frac{k}{12} - h}{p - 1} E_2(pz) + \frac{h - \frac{pk}{12}}{p - 1} E_2(z) \ (= O(q)).$$

By [1, (2.17)], we obtain

$$(G|_{2}W_{p})(z) = \frac{\theta(f|_{k}W_{p})}{f|_{k}W_{p}}(z) + \frac{\frac{k}{12} - h}{p - 1}E_{2}(z) + \frac{h - \frac{pk}{12}}{p - 1}p \cdot E_{2}(pz)$$
$$= h' + h - \frac{(p + 1)k}{12} + O(q).$$

Since
$$(G|_2W_p)(z) = (\sqrt{p}z)^{-2}G\left(-\frac{1}{pz}\right)$$
, we have $(G|_2W_1)(z) = \frac{1}{p}(G|_2W_p)(z/p)$.

Hence the constant term of $(G|_2W_1)(z)$ is

(2.2)
$$\frac{1}{p} \left(h' + h - \frac{(p+1)k}{12} \right).$$

It follows from (2.1) and (2.2) that G has the following expansions at the cusps:

(2.3)
$$G(z) = \sum_{n\geq 1} a_1(n)q^n \quad \text{at } \infty,$$

$$(G|_2W_1)(z) = \frac{1}{p} \left(h' + h - \frac{(p+1)k}{12} \right) + \sum_{n\geq 1} b_1(n)q^{n/p} \quad \text{at } 0.$$

As before, we let $X_0(p)$ be the compact Riemann surface obtained by adjoining the two cusps 0 and ∞ to Riemann surface $\Gamma_0(p)\backslash \mathbb{H}$. We consider an abelian differental w := G(z)dz on $X_0(p)$. For $\tau \in \mathbb{H} \cup \{0, \infty\}$,

let $Q_{\tau} \in X_0(p)$ be the point associated to τ under usual identification. Then it follows from [1, (2.5), (2.6)] and (2.3) that we have

$$\begin{cases} \operatorname{Res}_{Q_{\infty}} w = 0, \\ \operatorname{Res}_{Q_{0}} w = \frac{1}{2\pi i} \left(h' + h - \frac{(p+1)k}{12} \right), \\ \operatorname{Res}_{Q_{\tau}} w = \frac{1}{l_{\tau}} \operatorname{Res}_{z=\tau} G \ (\tau \in \mathbb{H}), \end{cases}$$

where $l_{\tau} \in \{1, 2, 3\}$ is the order of the isotropy subgroup of τ in $\Gamma_0(p)/\{\pm I\}$. Since $E_2(z)$ is holomorphic on \mathbb{H} and $\frac{\theta f}{f}(z) = \frac{1}{2\pi i} \frac{f'}{f}(z)$, we have that for $\tau \in \mathbb{H}$,

$$2\pi i \operatorname{Res}_{z=\tau} G = 2\pi i \left(\operatorname{Res}_{z=\tau} \frac{\theta f}{f}(z) \right) = \operatorname{ord}_{\tau} f.$$

By a fundamental fact [1, p. 793] that $\sum_{Q \in X_0(p)} \operatorname{Res}_Q w = 0$, we obtain

$$0 = 2\pi i \sum_{Q \in X_0(p)} \operatorname{Res}_Q w = h' + h - \frac{(p+1)k}{12} + \sum_{Q_{\tau} \in \Gamma_0(p) \setminus \mathbb{H}} \frac{\operatorname{ord}_{\tau} f}{l_{\tau}},$$

which implies

$$\sum_{Q_{\tau} \in \Gamma_0(p) \backslash \mathbb{H}} \frac{\operatorname{ord}_{\tau} f}{l_{\tau}} + \operatorname{ord}_0 f + \operatorname{ord}_{\infty} f = \frac{(p+1)k}{12}.$$

Acknowledgments

We would like to express our sincere thanks to the referee for his/her valuable comments.

References

- [1] S. Ahlgren, The theta-operator and the divisors of modular forms on genus zero subgroups, Math. Res. Lett., **10** (2003), 787-798.
- [2] D. Y. Oh, Modular forms on Γ₀(2) with all zeros on a specific geodesic, accepted in Proc. Japan Acad. Ser. A Math. Sci.
- [3] K. Ono, The web of modularity: arithmetic of the coefficients of modular forms and q-series, Amer. Math. Soc., CBMS Regional Conf. Series in Math., 102 (2004).

Dong Yeol Oh
Department of Mathematics Education
Chosun University
Gwangju 61452, Republic of Korea
E-mail: dyoh@chosun.ac.kr